If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-9x-729=0
a = 16; b = -9; c = -729;
Δ = b2-4ac
Δ = -92-4·16·(-729)
Δ = 46737
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{46737}=\sqrt{81*577}=\sqrt{81}*\sqrt{577}=9\sqrt{577}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9\sqrt{577}}{2*16}=\frac{9-9\sqrt{577}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9\sqrt{577}}{2*16}=\frac{9+9\sqrt{577}}{32} $
| -11r+11(6r+4)=44+10 | | 7x-5=×+7 | | v^2−8v+9=0 | | .06x+.3x=7.2 | | 18=y*3 | | y*2=10 | | 56=6*y | | 56=y*8 | | 25=5*y | | 24a=-49(10-a) | | 7(5+2x)-3(4x-2)=6(2x-3)-5(2x-7) | | 8n=7n-n | | 178/7=1/x | | 27=y*9 | | 5=5*y | | 15+b=-37 | | 42=6*y | | 72=8*y | | 9=1*y | | 3×(x+1)-2×(x+3)=11 | | 40=y*8 | | 5+3(x-2)=29 | | 35=y*5 | | 3/z-7=-6 | | 5(3s+7)=200 | | 3/5=1.2/x | | 54=y*9 | | 9=3*y | | 12=y*2 | | 20=5*y | | -5y+8=-3y-10 | | 2^2-3=7^2x |